数计-马昌凤 |
发布时间:2017-04-18 | 浏览次数: 5390 |
姓名:马昌凤
性别:男
出生年月:1962.6
职称:教授
研究方向:数值代数与优化、偏微分方程数值解
学科专长:计算数学
E-MAIL:macf@fjnu.edu.cn
通信地址:福州闽侯上街旗山高校教师公寓2栋
邮 编:350108
个人简介:男,1962年6月生,湖南隆回人,教授,博士生导师。现任职于福建师范大学数学与计算机科学学院。
教育经历:按时间倒排序,大专、学士、硕士、博士
2000/9—2003/7 中国科学院数学与系统科学研究院,计算数学,博士
1994/9—1997/7 湖南大学应用数学系,计算数学,硕士
1979/9—1982/7 邵阳学院,数学教育
科研与学术工作经历:按时间倒排序,包括博士后研究经历和学术访问等
2006/9—2017/7福建师范大学,数学与计算机科学学院,教授
2013/6—2013/7 南开大学,陈省身数学研究所,访问学者
2008/1--2008/2 新加坡南洋理工大学,数学系,访问学者
2005/2—2006/1 浙江师范大学,数理学院,教授
2004/4—2006/6 华中科技大学,数学系,博士后
2004/2—2004/3北京飞箭软件有限公司,访问学者
2003/2—2005/2 桂林电子科技大学,数学与计算科学学院,教授
1997/8—200/7 长沙理工大学,数学与计算科学学院,副教授
学术兼职:
中国计算数学学会,理事
福建省运筹学会,副理事长
福建省数学会,理事
研究方向:主要从事数值代数、数值优化,偏微分方程数值解等方面的研究
成果奖励:
2012年度重庆市科学技术奖(自然科学奖)二等奖(排名第二)。
科研项目:
1.中国科学院战略性先导科技专项(B类),XDB18010202, 子课题:热力学方程离散鞍点系统的数据测试,2017/1-2019/12,15万元,在研,主持。
2.福建省自然科学基金面上项目,2016J01005,大型矩阵方程的迭代法及其预处理技术,2016/4—2019/4,3万元,在研,主持。
3.财政部重大科研仪器设备研制专项,航空超导全张量磁梯度测量装,ZDYZ2012-1-02,子课题:大型稀疏线性系统的变分迭代法测试分析,2014/1—2016/12,4万元,已结题,主持。
4.福建省自然科学基金面上项目,2013J01006,浅水波方程的格子玻尔兹曼模型与数值仿真,2013/1—2015/12,3万元,已结题,主持。
5.国家自然科学基金面上项目,11071041,随机变分不等式与互补问题的迭代算法研究,2011/1—2013112,25万元,已结题,主持。
6.福建省自然科学基金面上项目,2009J01002,对称锥互补问题数值算法研究, 2009/6—2011/3,3万元,已结题,主持。
7.福建省资助省属高校项目(JK项目),2008F5019,基于高性能计算的复杂流体的格子Boltzmann方法,2008/5—2011/6,3万元,已结题,主持。
8.国家自然科学基金面上项目,10661005,麦克斯韦方程组快速数值算法研究,2007/1—2009/12,25万元,已结题,主持。
9.广西自然科学基金面上项目,桂科自0640165,电磁场麦克斯韦方程组的快速数值算法研究, 2006/2—2009/2,4万元,已结题,主持。
10.中国博士后科学基金项目(二等),2004036133,基于非规范势的电磁场麦克斯韦方程组快速数值算法研究,2004/9—2006/6,2万元,已结题,主持。
11.广西自然科学基金面上项目,桂科基0448075,3D涡流场A-Φ电磁势方法及其解耦技术,2004/5—2007/6,5万元,已结题,主持。
12.国家自然科学基金面上项目,10361003,对称有界区域上的托普里兹算子,2004/1—2006/12,18万元,已结题,参加(排名第二)。
教学情况:近5年讲授的研究生课程和指导学生参加创新创业比赛等
博士研究生:偏微分方程数值解,数值代数与算法,非线性互补理论与算法
硕士研究生:非线性数值分析,最优化理论与方法,矩阵分析与计算
论文著作:按时间倒排序,近5年发表的代表性学术论文、出版的学术专著、授权的发明专利和公开的政府咨询报告等;
(一)学术著作:
1.数值代数与算法,国防工业出版社,2017.3,60万字
2.最优化计算方法及其MATLAB程序实现,国防工业出版社,2015.6,39万字
3.现代数值分析,国防工业出版社,2013.3,39万字
4. 最优化方法及其MATLAB程序设计,科学出版社,2010.8,29万字
5.非稳态电磁场的A-ф方法,科学出版社,2008.7,16.8万字
6.现代数值计算方法,科学出版社,2008.6,28.2万字
(二)期刊论文:作者姓名,论文题目,期刊名称,发表时间,卷(期):起止页码
1.Jing-Jing Hu,Chang-Feng Ma*, Minimum-norm Hamiltonian solutions of a class of generalized Sylvester-conjugate matrix equations, Computers and Mathematics with Applications, 2017,73(5):747–764.
2.Yi-Fen Ke,Chang-Feng Ma*, The dimensional splitting iteration methods for solving saddle point problems arising from time-harmonic eddy current models, Applied Mathematics and Computation, 2017, 303:146-164.
3.Yifen Ke,Changfeng Ma*,An alternating direction method for nonnegative solutions of the matrix equation AX+YB = C,Computational & Applied Mathematics,2017,36:359–365.
4.Cairong Chen,Changfeng Ma,A generalization of the HSS-based sequential two-stagemethod for solving non-Hermitian saddle pointproblems,Numerical Algorithms,2016, 73(4): 1073-1090.
5.Changfeng Ma, Huaize Lu,Numerical Study on Nonsymmetric Algebraic Riccati Equations, Mediterranean Journal of Mathematics, 2016,3(6): 4961-4973.
6.Cai-Rong Chen,Chang-Feng Ma,AOR-Uzawa iterative method for a class of complexsymmetric linear system of equations,Computers & Mathematics with Applications,2016, 72:2462-2472.
7.Na Huang,Changfeng Ma*,Positivedefinite andsemi-definitesplittingmethods fornon-Hermitianpositivedefinitelinearsystems,Journal of Computational Mathematics,2016,34(3):287–303.
8.Changfeng Ma, Baoguo Chen, Shaojun Pan,A modified feasible semi-smoothasymptotically Newton method for nonlinearcomplementarity problems,Journal of Inequalities and Applications,2016,230:1-13.
9.Qing-Qing Zheng,Chang-Feng Ma,Accelerated PMHSS iteration methods for complexsymmetric linear systems,Numerical Algorithms,2016, 73(2): 501-516.
10.Yi-Fen Ke,Chang-Feng Ma,A note on “A dimensional split preconditioner for Stokes and linearized Navier–Stokesequations”,Applied Numerical Mathematics, 2016, 108: 223-225.
11.Changfeng Ma*,Na Huang,Modified modulus-based matrix splitting algorithms for aclass of weakly non-differentiable nonlinear complementarity problems,Applied Numerical Mathematics, 2016, 108:116-1 24.
12.Na Huang,Changfeng Ma*, Yajun Xie,Thederivative-freedouble Newtonstepmethods forsolvingsystem ofnonlinearequations, MediterraneanJournal of Mathematics, 2016, 13(4): 2253-2270.
13.Na Huang,Changfeng Ma*,The inversion-free iterative methods for a system of nonlinear matrix equations,International Journal of Computer Mathematics, 2016,93(9): 1470-1483.
14.Yi-Fen Ke,Chang-Feng Ma*,Spectrum analysis of a more general augmentationblock preconditioner for generalized saddle pointmatrices,BIT Numerical Mathematics,2016,56:489–500.
15.Min-Li Zeng,Chang-Feng Ma*,A parameterized SHSS iteration method for a class of complex symmetric system of linear equations,Computers& Mathematics with Applications, 2016, 71(10): 2124-2131.
16.Ya-Jun Xie,Chang-Feng Ma*,A modified positive-definite and skew-Hermitiansplitting preconditioner for generalized saddle pointproblems from the Navier-Stokes equation,Numerical Algorithms,2016,72:243–258.
17.Na Huang,Changfeng Ma*, The modulus-based matrix splitting algorithms for a class of weakly nonlinear complementarity problems,Numerical Linear Algebra With Applications,2016; 23:558–569.
18.Huaize Lu,Changfeng*,A new linearized implicit iteration method for nonsymmetric algebraic Riccati equations, Journal of Applied Mathematics and Computing, 2016, 50: 227-241.
19.Qing-Qing Zheng,Chang-Feng Ma*,A class of triangular splitting methods for saddle point problems, Journal of Computational and Applied Mathematics, 2016, 298: 13-23.
20.Na Huang,Changfeng Ma*,The modified conjugate gradient method for obtaining the minimum-norm solution of the generalized coupled Sylvester-conjugate matrix equations,Applied Mathematical Modelling, 2016, 40:1260-1275.
21.Na Huang,Changfeng Ma*,Anew GSORmethod forgeneralisedsaddlepointproblems, East Asian Journal on Applied Mathematics, 2016, 6: 23-41.
22. Qing-Qing Zheng,Chang-Feng Ma*, Preconditioned AHSS-PU alternating splitting iterative methods for saddle point problems,Applied Mathematics and Computation, 2016, 273: 217–225.
23.Yajun Xie,Changfeng Ma*, The accelerated gradient based iterative algorithm for solving a class of generalized Sylvester-transpose matrix equation,Applied Mathematics and Computation, 2016, 273:1257- 1269.
24.Yajun Xie,Changfeng Ma*,A generalized Newton method of high-order convergence for solving the large-scale linear complementarity problem,Journal of Inequalities and Applications, 2015, 410:1-12.
25.Na Huang,Changfeng Ma*,Parallel multisplitting iteration methods based on M-splitting for the PageRank problem,Applied Mathematics and Computation, 2015, 271: 337-343.
26.Na Huang,Changfeng Ma*,The nonlinear inexact Uzawa hybrid algorithms based on one-step Newton method for solving nonlinear saddle-point problems,Applied Mathematics and Computation, 2015, 270: 291-311.
27.Na Huang,Changfeng Ma*, A globally convergent damped Gauss-Newton method for solving the extended linear complementarity problem, Journal of Numerical Mathematics, 2015,23(3):247-256.
28.Yi-Fen Ke,Chang-Feng Ma*, A neural network for the generalized nonlinear complementarity problemover a polyhedral cone,Journal of the Australian Mathematical Society, 2015, 99(3): 364-379.
29.Yifen Ke,Changfeng Ma*,The generalized viscosity implicit rules of nonexpansive mappings in Hilbert spaces,Fixed Point Theory and Applications, 2015, 190: 1-21.
30.Jia Tang, Yajun Xie,Changfeng Ma*,A modified product preconditioner for indefinite and asymmetric generalized saddle-point matrices,Applied Mathematics and Computation, 2015,268: 303-310.
31.Na Huang,Changfeng Ma*,Two inversion-free iterative algorithms for computing the maximal positive definite solution of the nonlinear matrix equation,Applied and Computational Mathematics, 2015, 14(2): 158-167.
32.Liying Hu, Gongde Guo,Changfeng Ma*, Image processing using Newton-based algorithm ofnonnegative matrix factorization, Applied Mathematics and Computation, 2015, 269: 956-964.
33.Cairong Chen,Changfeng Ma*,A generalized shift-splitting preconditioner for singular saddle point problems,Applied Mathematics and Computation, 2015, 269: 947-955.
34.Yajun Xie,Changfeng Ma*,The scaling conjugate gradient iterative method for two types of linear matrix equations,Computers & Mathematics with Applications, 2015, 70(5): 1098-1113.
35.Yifen Ke,Changfeng Ma, Strong convergence theorem for a common fixed point of a finite family of strictly pseudo-contractive mappings and a strictly pseudononspreading mapping,Fixed Point Theory and Applications,2015, 116: 1-23.
36.Changfeng Ma, Qingqing Zheng,The corrected Uzawa method for solving saddle point problems,Numerical Linear Algebra with Applications, 2015, 22:717-730.
37.Yajun Xie,Chang-Feng Ma*,The matrix iterative methods for solving a class of generalized coupled Sylvester-conjugate linear matrix equations,Applied Mathematical Modelling, 2015, 39:4895-4908.
38.Na Huang,Chang-Feng Ma*, Ya-Jun Xie,An inexact relaxed DPSS preconditioner for saddle point problem,Applied Mathematics and Computation, 2015, 265:431-447.
39.Yajun Xie,Changfeng Ma*, The MGPBiCG method for solving the generalized coupled Sylvester-conjugate matrix equations,Applied Mathematics and Computation, 2015, 265:68-78.
40.Na Huang,Changfeng Ma*,Two structure-preserving-doubling like algorithms for obtaining the positive definite solution to a class of nonlinear matrix equation,Computers & Mathematics with Applications, 2015, 69: 494-502.
41.Li-Ying Hu, Gong-De Guo, Chang-Feng Ma,The least squares anti-bisymmetric solution and the optimal approximation,Applied Mathematics and Computation, 259 (2015): 212-219.
42.Yedan He,Changfeng Ma*, Bin Fan,A corrected Levenberg-Marquardt algorithm with a nonmonotone line search for the system of nonlinear equation,Applied Mathematics and Computation, 260 (2015): 159-169.
43.Yi-Fen Ke,Chang-Feng Ma*,Alternating direction method for generalized Sylvester matrix equation AXB + CYD = E,Applied Mathematics and Computation, 260 (2015):106-125.
44.Jia Tang,Changfeng Ma*,A smoothing Newton method for symmetric cone complementarity problems,Optimization Letters, (2015) 9:225–244.
45.Qing-Qing Zheng,Chang-Feng Ma*, Fast parameterized inexact Uzawa algorithm for complex symmetric linear systems,Applied Mathematics and Computation, 2015, 256:11-19.
46.Na Huang,Changfeng Ma*, The BGS-Uzawa and BJ-Uzawa iterative methods for solving the saddle point problem,Applied Mathematics and Computation, 2015, 256 : 94-108.
47.Cairong Chen,Changfeng Ma*,A generalized shift-splitting preconditioner for saddle point problems,Applied Mathematics Letters, 43 (2015) 49-55.
48.Na Huang,Changfeng Ma*, Some predictor-corrector-type iterative schemes for solving nonsymmetric algebraic Riccati equations arising in transport theory,Numerical Linear Algebra with Applications, 2014, 21:761-780.
49.Yi-Fen Ke,Chang-Feng Ma*, A preconditioned nested splitting conjugate gradient iterative method for the large sparse generalized Sylvester equation, Computers & Mathematics with Applications, 2014, 68 :1409-1420.
50.Qingqing Zheng,Changfeng Ma*, A class of accelerated Uzawa algorithms for saddle point problems,Applied Mathematics and Computation, 2014, 247:244-254.
51.Na Huang,Changfeng Ma*,Exceptional family and solvability of the second-order cone complementarity problems,Applied Mathematics and Computation, 2014, 244: 561-566.
52.Yajun Xie,Changfeng Ma*, Iterative methods to solve the generalized coupled Sylvester-conjugate matrix equations for obtaining the centrally symmetric (centrally anti-symmetric) matrix solutions, Journal of Applied Mathematics, Volume 2014, Article ID 515816, 12 pages.
53.Yi-Fen Ke,Chang-Feng Ma*, On the convergence analysis of two-step modulus-based matrix splitting iteration method for linear complementarity problems,Applied Mathematics and Computation, 2014, 243: 413-418. (WOS:000340563800037)
54.Na Huang andChangfeng Ma*,The iteration solution of matrix equation AXB=C subject to a linear matrix inequality constraint, Abstract and Applied Analysis, Vol. 2014, Article ID 705830, 9 pages.
55.Yajun Xie, Na Huang,Changfeng Ma*, Iterative method to solve the generalized coupled Sylvester-transpose linear matrix equations over reflexive or anti-reflexive matrix, Computers and Mathematics with Applications, 67 (2014) : 2071-2084.
56.Na Huang,Changfeng Ma*, Anew exceptional family of elements and solvability of general order complementarity problems, The Scientific World Journal, Volume 2014, Article ID 248462, 6 pages.
57.Meiyan Li,Changfeng Ma*,A continuation method for linear complementarity problems withP0-matrix,Optimization, 2014, 63(5): 757-773.
58.Na Huang,Changfeng Ma*, Convergence analysis and numerical study of a fixed-point iterative method for solving systems of nonlinear equations, The Scientific World Journal, Volume 2014, Article ID 789459, 10 pages.
59.Qing-Qing Zheng,Chang-Feng Ma*, On normal and skew-Hermitian splitting iteration methods for large sparse continuous Sylvester equations,Journal of Computational and Applied Mathematics, 2014, 268: 145-154. (WOS:000335636300012)
60.Qingqing Zheng,Changfeng Ma*, A new SOR-like method for the saddle point problems,Applied Mathematics and Computation, 2014, 233:421-429.
61.Na Huang,Changfeng Ma*, The modified conjugate gradient methods for solving a class of the generalized coupled Sylvester-transpose matrix equations, Computers & Mathematics with Applications, 2014, 67: 1545-1558.
62.Jinghui Liu,Changfeng Ma*, A new nonmonotone trust region algorithm for solving unconstrained optimization problems, Journal of Computational Mathematics, 2014, 32(4): 476–490.
63. Yajun Xie,Yifen Ke,Changfeng Ma*, The modified accelerated Bregman method for regularized basis pursuit problem,Journal of Inequalities and Applications, 2014,130:1-17.
64.Yifen Ke,Changfeng Ma*, Iterative algorithm of common solutions for a constrained convex minimization problem, a quasi-variational inclusion problem and the fixed point problem of a strictly pseudo-contractive mapping,Fixed Point Theory and Applications, 2014, 54: 1-15.
65.Yifen Ke,Changfeng Ma*, The generalized bisymmetric (bi-skew-symmetric) solutions of a class of matrix equations and its least squares problem, Abstract and Applied Analysis, Vol.2014, Article ID 239465, 10 pages, 2014.
66.Na Huang,Changfeng Ma*,A sufficient condition that has no exceptional family of elements for SDCP,Optimization Letters, 8(2014): 259-265.
67.Na Huang,Changfeng Ma*, A regularized smoothing Newton method for solving SOCCPs based on a new smoothing C-function,Applied Mathematics and Computation, 230(2014): 315-329. (WOS: 000332402400030)
68.Huilin Lai,Changfeng Ma,A new lattice Boltzmann model for solving the coupled viscous Burgers’ equation, Physica A, 395(2014): 445-457.
69.Na Huang,Changfeng Ma*, The inversion-free iterative methods for solving the nonlinear matrix equation, Abstract and Applied Analysis, Vol. 2013, Article ID 843785, 7 pages, 2013.
70.Jinghui Liu,Changfeng Ma*,A nonmonotone trust region method with new inexact line search for unconstrained optimization,Numerical Algorithms, 2013, 64:1-20.
71.Yifen Ke,Changfeng Ma*, The convergence analysis of the projection methods for a system of generalized relaxed cocoercive variational inequalities in Hilbert spaces, Fixed Point Theory and Applications, 2013,189:1-11.
72.Yifen Ke,Changfeng Ma*, A new relaxed extragradient-like algorithm for approaching common solutions of generalized mixed equilibrium problems, a more general system of variational inequalities and a fixed point problem, Fixed Point Theory and Applications, 2013,126: 1-21.
73.Na Huang,Changfeng Ma*, Zhenggang Liu,A new extragradient-like method for solving variational inequality problems,Fixed Point Theory and Applications,2012,2012:223.
74.Huilin Lai,Changfeng Ma*,Numerical study of the nonlinear combined sine-cosine -Gordon equation with the lattice Boltzmann method,Journal of Scientific Computing, 2012, 53: 569–585.
75.Changfeng Ma*,A feasible semismooth Gausee-Newton method for solving a class of SLCPS,Journal of Computational Mathematics, 2012, 30:197-222.
76.Na Huang,Changfeng Ma*,The numerical study of a regularized smoothing Newton method for solving P0-NCP based on the generalized smoothing Fischer-Burmeister function, Applied Mathematics and Computation, 2012, 218: 7253-7269.
77.Jia Tang,Changfeng Ma*,An application of H differentiability to generalized complementarity problems over symmetric cones, Computer & Mathematics with Applications, 2012,63:14-24.
78.Changfeng Ma, The semismooth and smoothing Newton methods for solving Pareto eigenvalue problem, Applied Mathematical Modelling, 2012, 36:279-287.
指导研究生:
博士研究生:2016级 黄宝华,吕长青;2015级 陈彩荣;2014级 柯艺芬;2013级 黄娜;2012级 谢亚君
硕士研究生:2016级 闫熙;2015级 李成梁,胡晶晶;2014级 李景涛,王婷;2013级 陈彩荣;2012级 卢怀泽,郑青青,闫建瑞,柯艺芬;2011级 黄娜,何叶丹;2010级:范斌,刘景辉,禹德,吴超,尤鸿明;2009级 张丽娜,[乔涵麟];2008级 董朝丽,余芝云,潘少君,许小芳,王燊,[唐江花,刘宁,柴婧,丁小妹];2007级 陈林婕,谢亚君,叶海,简薇薇,薛凌霄,陈秀琴,[王学斌,李梅艳,倪健];2006级 陈文平,陈碧连,赖惠林,林钊,[钟志鹏,何婵];2005级 [龙君,唐嘉,陈小红];2004级 [何郁波,田亚娟];2003级 [石武军,唐菊珍]。
![]() |